



### Can We Model Stimulation Processes in Naturally Fractured Geothermal Reservoirs?

### 2019 ARMA-CUPB

Geothermal International Conference

Maurice B Dusseault
University of Waterloo, Waterloo ON

### **NFR**



 The Naturally Fractured Rock (Reservoir) mass to be "stimulated"



### What Controls Stimulation?



NFR Fabric Geometry **NFR Joint Properties** In Situ Stresses Stimulation Rate Fluids Used in HF ...and some others

### Naturally Fractured Rock Mass





Real rock mass





### MA-CUPB Modeling Stimulation

### Natural Fractures



- Natural fractures are largely "closed"
- ...we want to open & connect the natural fractures by HF & HS
- So, NFR properties are very important but we don't know how to incorporate them easily into models:
  - Cohesion, frictional behavior, ductility
  - ⇒ Fabric (frequency, orientation, sets, etc.)
  - ⇒ Fracture compressibility & conductivity
  - ⇒ Changing stresses & fracture aperture
  - ⇒ And so on...







...and irregular orientations, varying aperture, different roughness, etc. etc.

### MA-CUPB Modeling Stimulation

### A Stochastic Approach?



- Natural fabric variability uncertainty
- Our tools to "see" the fabric in a NFR at depth are very limited (core, acoustics)
- Which parameters are most important?
- Spacing, scale, persistence, distributions...? Of what types?
- We need input from some sophisticated people who understand NFR fabric

### Representative Geometries?



- Fabric is a highly complex subject
- Can we choose "representative" geometries for HF simulations?



### A-CUPB Modeling Stimulation

### Joint Mechanical Properties



- Even a "simple" DEM approach needs...
- Cohesion (An "average"? Or local? Scale)
- Friction behavior (= f(roughness))
- Stiffness (invariably =  $f(\sigma'_n)$ )
- Shear stiffness (=  $f(\tau, roughness)$ )
- Conductivity (= f(apparent aperture))
- Dilation function...

Each parameter is stochastic, linked to others, highly non-linear, f(scale)

Are Joints Rough or Smooth?



Waterloo



### Joint Properties Description



- How to describe the distribution of non-linear parameters like c',  $\phi'$ ?
- Measuring values? Distributions?
  - ⇒ For each joint set?
  - ⇒ ... scale effects?
- Clearly, there is no realistic chance to get precise answers
- So, do we determine the dominant parameters and focus only on them?



### Rock Mass Stimulation and Well Connection

### Interwell Communication...





### The Main Issues...



- In Situ Stresses
- Naturally Fractured
   Rock Mass Properties
- Stimulation Process
   (rates, pressures, time)
- Exploitation Schedule

### In Situ Stresses



- The stress state in the ground is a fundamental factor in stimulation
- A three-dimensional stress state exists



### Stresses and Stimulation



- Value of  $\sigma_3$  dominates HF behavior
- $\bullet$  Orientation of  $\sigma_3$  controls direction
- Fractures rise, generally
- Deviatoric stress ( $\sigma_1$   $\sigma_3$ ) magnitude and stress ratio ( $\sigma_1'/\sigma_3'$ ) control shearing
- And rock & joint properties also...
- ...& stresses change during stimulation!

We understand HF better these days, but not truly predictively.

### MA-CUPB Modeling Stimulatio

### Stresses and Simulation



- We often assume a homogeneous  $[\sigma_{ij}]$
- But we know that initial σ<sub>h</sub> stresses are different from bed to bed...
- ...and the transitions are not abrupt
- ...and there are lateral variations too



Assumed  $\sigma_h$  in HF model





# **ARMA-CUPB Modeling Stimulation**

### Pressure Records Show Δσ/Δt



Pressure drops = changes in orientation



### Simulation of Stimulation



The effect of HF and Hydroshearing



### Shear Dilation





**Shear Dilation in Stimulation** 

### Local HF Reorientation...





### **IA-CUPB Modeling Stimulation**

### Large-Scale HF Propagation





### Aperture Impact





# **ARMA-CUPB Modeling Stimulation**

### The Stimulated Volume





### Scale and Analysis (Simulation)









### MA-CUPB Modeling Stimulation

### Simulation and Uncertainty



- Simulating HF & HS is challenging
- Because of uncertainty...
- ...no one can closely predict stimulation outcomes a priori with only simulation
- I believe up-scaled models are vital, and
- ...fabric and system variability must be simplified and better accommodated
- ...real-time monitoring is important
- …field calibration remains vital

### Permeability Evolution

t=80 s





t = 200 s

46

t = 460 s

### RMA-CUPB Modeling Stimulation

### Monitoring Stimulation



- P, T, rate are standard measures...
- Microseismic monitoring is good, but...
- We need <u>deformations</u> in order to:
  - Track what is going on at depth
  - ⇒ Calibrate and use geomechanics models
- Options?
  - ⇒ Precision tilt measurements
  - ⇒ Fibre-optics cables in shallow slim holes
  - ⇒ 3-D active seismics (stress changes)

### Conclusions



- Many variables, unknown distributions
- Rock fabric and scale impacts
- Natural & induced stress inhomogeneity
- We will never fully constrain these parameters. So...
- ...predicting stimulation outcomes in the absence of monitoring data is improbable
- ...predicting stimulation outcomes in the absence of calibrations is improbable

### RMA-CUPB Modeling Stimulation

### What Shouldn't we Model?



- Tip processes?
  - ⇒ Too dominated by local effects
  - → Tip process zone is small compared to the HF scale - St. Venant's Principle
- Individual joint responses?
  - Huge constitutive uncertainty for each joint, we must adopt an upscaled "law"
  - $\Rightarrow$  Huge changes in fracture conductivity, we must adopt a non-linear "k" = f(damage?)
- Avoiding deterministic fabric models?
- What use is fracture toughness?



- Many useful subjects for research and ideas for implementation in the field
- We will never be able to "predict" in a deterministic manner...
- ...but we should get much better at predicting "ranges of outcomes"

Addressing these challenges will drive future EGS implementation, but modesty in our ability to "predict" remains appropriate

mulation

### **MA-CUPB Modeling Stimulation**

### Acknowledgements



- ARMA and CUPB
- The Organizers, including Han Gang,
   Jiang Shu, Song Xianzhi, John McLennan
- Workers and coordinators, including Peter Smeallie, Sheng Mao, Zhang Yiqun and others
- ...colleagues

