Can We Model Stimulation Processes in Naturally Fractured Geothermal Reservoirs?

2019 ARMA-CUPB Geothermal International Conference

Maurice B Dusseault
University of Waterloo, Waterloo ON
The Naturally Fractured Rock (Reservoir) mass to be “stimulated”

From tankonyvtar.hu
What Controls Stimulation?

NFR Fabric Geometry
NFR Joint Properties
In Situ Stresses
Stimulation Rate
Fluids Used in HF
…and some others
Naturally Fractured Rock Mass

Regular, describable systems

Real rock mass
Utica Shale, note the consistent natural fracture fabric

http://blog.aapg.org/learn/?p=659
Natural Fractures

- Natural fractures are largely “closed”
- ...we want to open & connect the natural fractures by HF & HS
- So, NFR properties are very important but we don’t know how to incorporate them easily into models:
 - Cohesion, frictional behavior, ductility
 - Fabric (frequency, orientation, sets, etc.)
 - Fracture compressibility & conductivity
 - Changing stresses & fracture aperture
 - And so on...
How regular is spacing?
What about 3 km deep?
Small scale

Crack gradually disappears

Terminated crack

Offset crack

Incipient crack

...and irregular orientations, varying aperture, different roughness, etc. etc.
A Stochastic Approach?

- Natural fabric variability uncertainty
- Our tools to “see” the fabric in a NFR at depth are very limited (core, acoustics)
- Which parameters are most important?
- Spacing, scale, persistence, distributions...? Of what types?
- We need input from some sophisticated people who understand NFR fabric
Representative Geometries?

- Fabric is a highly complex subject
- *Can we choose “representative” geometries for HF simulations?*

Voronoi tessellation Cross-joints Cross-cuts

[Images of Voronoi tessellation, Cross-joints, and Cross-cuts]
Joint Mechanical Properties

- Even a “simple” DEM approach needs...
- Cohesion (An “average”? Or local? Scale)
- Friction behavior (= $f(\text{roughness})$)
- Stiffness (invariably = $f(\sigma_n')$)
- Shear stiffness (= $f(\tau, \text{roughness})$)
- Conductivity (= $f(\text{apparent aperture})$)
- Dilation function...

Each parameter is stochastic, linked to others, highly non-linear, $f(\text{scale})$
Are Joints Rough or Smooth?

Source: N. Barton and A. Makurat
Are fractures smooth or rough?
Joint Properties Description

- How to describe the distribution of non-linear parameters like c', ϕ'?
- Measuring values? Distributions?
 - For each joint set?
 - ...scale effects?
- Clearly, there is no realistic chance to get precise answers
- So, do we determine the dominant parameters and focus only on them?
Rock Mass Stimulation and Well Connection
Interwell Communication...

- Surface casing
- Cement
- Production casing

Wellbores:
- Overburden rocks
- Hydraulic fracture stages

Distance:
- 200-600 m
- 3 - 7 km
- 1500-2000 m

Reservoir:
- Hot dry rock reservoir
The Main Issues...

- *In Situ* Stresses
- Naturally Fractured Rock Mass Properties
- Stimulation Process (rates, pressures, time)
- Exploitation Schedule
In Situ Stresses

- The stress state in the ground is a fundamental factor in stimulation
- A three-dimensional stress state exists

\[
\begin{align*}
\sigma_{HMAX} &> \sigma_{hmin} \\
\sigma_v &\text{ is also a principal stress}
\end{align*}
\]

In Situ Stresses

\[
\begin{align*}
\sigma_{HMAX} &> \sigma_{hmin} \\
\sigma_v &\text{ is also a principal stress}
\end{align*}
\]
Stresses and Stimulation

- Value of σ_3 dominates HF behavior
- Orientation of σ_3 controls direction
- Fractures rise, generally
- Deviatoric stress ($\sigma_1 - \sigma_3$) magnitude and stress ratio (σ'_1/σ'_3) control shearing
- And rock & joint properties also...
- ...& stresses change during stimulation!

We understand HF better these days, but not truly predictively.
- We often assume a homogeneous \([\sigma_{ij}]\)
- But we know that initial \(\sigma_h\) stresses are different from bed to bed...
- ...and the transitions are not abrupt
- ...and there are lateral variations too

Assumed \(\sigma_h\) in HF model
Impact of Stress Angle

(a) $\beta = 0$

(b) $\beta = 60^\circ$

(c) $\beta = 90^\circ$

(d) $\beta = 160^\circ$
Pressure Records Show $\Delta \sigma / \Delta t$

- Pressure drops = changes in orientation

![Graph showing pressure changes over time with labels for vertical, horizontal, gradual p increase, sudden drop, gradual drop, and σ_v.]
Simulation of Stimulation

- The effect of HF and Hydroshearing

\[\sigma_{\text{hmin}} \]
Shear Dilation

Closed natural fracture
≈ zero conductivity

Remnant shear dilation
= high conductivity

Shear Dilation in Stimulation
Local HF Reorientation...

- σ_n increase
- σ_3 drop in σ_n
- σ_3 local stress effects
- σ_3 natural fractures

- Global orientation
- σ_3
- σ_{HMAX}
Locally, fractures follow fabric; globally, fractures are \(\perp \) to \(\sigma_3 \).

Natural fracture system in the rock.
Aperture Impact

\[\sigma_{xx} = 30 \text{ MPa} \]

\[\sigma_{yy} = 23 \text{ MPa} \]

Wedged natural fractures

\[Q = \frac{\gamma}{\mu} \cdot G\alpha^3 \Delta \rho \]
The Stimulated Volume

- Dilated zone
- "Open" aperture zone
- Shear

\(\sigma_{hmin} \)
Scale and Analysis (Simulation)

Wang, Zhao Lin 2011 Engineering 3(1)
Simulation and Uncertainty

- Simulating HF & HS is challenging
- Because of uncertainty...
- ...no one can closely predict stimulation outcomes *a priori* with only simulation
- I believe up-scaled models are vital, and
- ...fabric and system variability must be simplified and better accommodated
- ...real-time monitoring is important
- ...field calibration remains vital
Permeability Evolution

$t=80\ s$ $t=200\ s$ $t=460\ s$
Monitoring Stimulation

- P, T, rate are standard measures...
- Microseismic monitoring is good, but...
- We need **deformations** in order to:
 - Track what is going on at depth
 - Calibrate and use geomechanics models
- Options?
 - Precision tilt measurements
 - Fibre-optics cables in shallow slim holes
 - 3-D active seismics (stress changes)
Conclusions

- Many variables, unknown distributions
- Rock fabric and scale impacts
- Natural & induced stress inhomogeneity
- We will never fully constrain these parameters. So...
- ...predicting stimulation outcomes in the absence of monitoring data is improbable
- ...predicting stimulation outcomes in the absence of calibrations is improbable
What Shouldn't we Model?

- **Tip processes?**
 - Too dominated by local effects
 - Tip process zone is small compared to the HF scale - St. Venant’s Principle

- **Individual joint responses?**
 - Huge constitutive uncertainty for each joint, we must adopt an upscaled “law”
 - Huge changes in fracture conductivity, we must adopt a non-linear “k" = f(damage?)

- **Avoiding deterministic fabric models?**

- **What use is fracture toughness?**
But These are also Challenges!

- Many useful subjects for research and ideas for implementation in the field
- We will never be able to “predict” in a deterministic manner...
- ...but we should get much better at predicting “ranges of outcomes”

Addressing these challenges will drive future EGS implementation, but modesty in our ability to “predict” remains appropriate
Acknowledgements

- ARMA and CUPB
- The Organizers, including Han Gang, Jiang Shu, Song Xianzhi, John McLennan
- Workers and coordinators, including Peter Smeallie, Sheng Mao, Zhang Yiqun and others
- ...colleagues
Naturally Fractured Rocks...