

Hydrofracking and Hydroshearing: Naturally Fractured Rock Mass Stimulation for EGS

2019 ARMA-CUPB

Geothermal International Conference

Maurice B Dusseault University of Waterloo, Waterloo ON

High-Grade Geothermal Energy

Hudson Ranch, Imperial valley, CA, USA

The Four Geothermal Pillars

- High-grade (steam), power generation
 - Dry and wet steam, direct generation of power
- SedHeat for energy in warm pore fluids
 - ⇒ 50-140°C liquids, power + heat
- Hot (warm) dry rock geothermal EGS
 - ⇒ 50-300°C low permeability rocks, power and heat
- Heat pump geothermal (GSHP storage)
 - ⇒ Transfer of heat to and from a georepository for cyclic, even seasonal heat storage, perhaps power

High-Grade Geothermal Siting

Heating, Cooling, and the Earth

Generally...

- 600 million people need heat (mainly)
- 3 billion people need cooling (mainly)
- 3 billion people desire both, seasonally
- Everyone wants some power

The geothermal focus has been power: heat provision secondary, cooling largely ignored

Only BC & Yukon have high-grade geothermal potential (power)

Only WCSB has reasonable SedHeat geothermal potential (power)

Geothermal Methods...

- Deep, High-T Geothermal or SedHeat?
- Not in 95% of Canada!
- Shallow local geothermal with heat pumps is used - energy storage
- EGS Enhanced Geothermal Systems
 - "Intermediate-grade" thermal energy
 - \Rightarrow "Heat mining" at depths of > 4 km (T > 70°C)
 - ⇒ Large volumes of rock, but little water...
- EGS possibilities?
- Rock mass stimulation?

ZxT for Geothermal Resources

http://iter-geo.eu/shallow-geothermal-systems-how-extract-inject-heat-into-ground/

open loop system Heat storage

water body

closed loop system

2 wells

Heat storage

vertical horizontal geothermal piles

ARMA-CUP – HF and HS for EGS

GSHP T-Balance

Heating dominates in the north

So Here is the Problem...

- Conventional co-generation power +
 heat needs T > 75°C
- And we need to drill at least 3-4 km deep
- Shallow geothermal (GSHP) alone does not work in extreme climates as the ground heats or cools too much over time
- It seems that shallow geothermal and EGS coupled may help address issues...
- But heat (or cool) storage will be necessary in extreme climates - hence Q

10

From Wikipedia

500 - 1000 m

- 7 Hot H₂O to district heating
- 8 Porous sediments
- 9 Observation well
- 10 Crystalline bedrock

What **V**, **Q** are needed?

EGS and SedHeat Geothermal

- EGS from hot, dry rock
 - ⇒ Little to no intrinsic permeability
 - Heat exchange to a working (circulating) fluid is needed (convection is too slow)
 - Rock mass permeability must be increased
 - → At least two wellbores are needed
- SedHeat from hot sedimentary fluids
 - Reservoir fluid must be hot enough
 - ...and rock permeable enough
 - ⇒ Can be integrated with O&G operations
 - ⇒ Single deep well may suffice, with shallow disposal

Q - Heat Flux

Q - heat flux controls commerciality

RMA-CUP - HF and HS for EGS

Heat Flux by Pure Conduction

- Closed pipe system
- Heat transfer fluid circulated in pipes
- Fluid heated through conductive heat flux from the rock mass to the pipe
- Classic diffusion problem...
 - Heat flux depends on T-gradient
 - ...but this drops quickly! So...
 - ...pipes must be very long for a long life.
 - Can this be commercial for EGS?

For deep systems, enough Q is a challenge to achieve by heat flux into sealed pipes alone

Some Interim Conclusions...

Purely **conductive Q** to and from a deep rock mass remains a possibility... (e.g.

https://eavor.co/ technology)

...but EGS and many SedHeat cases require **stimulation** and **fluid flow** in the rock mass to achieve commercial levels of **Q**

Stimulation and fluid flow through the rock mass needed for EGS...

http://ieet.org/index.php/IEET/mor

MA-CUP – HF and HS for EGS

What Controls Q over Years?

- Accessible Rock Volume
- Flow Rate of the fluid
- Pathway Spacing and Aperture (Area)
- ◆ △T between fluid and rock mass
- Changes in Pathway Aperture with time (thermoelastic stress-strain response)

Problem: cooling increases pathway aperture, such that one pathway becomes dominant with time...

Q, Time and Economics

Q, Time and Economics

Our EGS Challenges...

- Predict reliably
 - ⇒ Can you model 30 years of Q behavior with P90?
- Drill cheaply
 - ⇒ Good news: new technology is lowering costs
- Stimulate effectively
 - Can you stimulate for 30 years of Q?
 - ⇒ ...with P90?

Unless you have a 90% success probability, the project will not begin

7 km Deep Drilling Rig...

Drilling costs increase <u>exponentially</u> with depth Heat in the rock increases <u>linearly</u> with depth So there are severe limits to EGS depth

www.sti.rr/ueephe

Finland

OTA-1 drill site concept

Strada Energy

- Geothermal drilling
- Claims up to 25
 m/hr in granite at
 1 km depth, air
 hammer
- Double drill pipe, reverse circulation
- Espoo project 7
 km deep, 2 wells
- 40 MW heating

Drilling Costs

- The primary cost factor in EGS
- With air and water hammer drilling, technology advances means that $dz/dt]_{ave} \rightarrow 4-5$ m/hr might be possible
- This means that a 4 km hole would take 50 days (including surface casing, logging, running deep casing...)
- ...other methods (rotary, plasma...)?
- ...and with modern rigs, there is more and more automation - so... STAY TUNED

Realistic Stimulation Options?

- Hydraulic fracturing (HF) to open pathways for conductive - convective heat flux from a large rock mass volume
- Hydroshearing (HS) to generate shear and dilation for conductive/convective heat flux from a large rock mass volume

Rankine Cycle engines for some power

Direct heat use for buildings and homes

Fracturing and **Shearing for Rock Mass Stimulation** in EGS Projects

The rock mass being stimulated for EGS is a low-permeability, naturally fractured rock mass

Interwell Communication...

The Main Issues...

- In Situ Stresses
- Naturally Fractured
 Rock Mass Properties
- Stimulation Process (rates, pressures, time)
- Exploitation Schedule

In Situ Stresses

- The stress state in the ground is a fundamental factor in stimulation
- A three-dimensional stress state exists

- Value of σ_3 dominates HF behavior
- Orientation of σ_3 controls well placement
- Deviatoric stress (σ_1 σ_3) magnitude and stress ratio (σ_1'/σ_3') control HS effects
- And rock & joint properties also...
- Stresses change during stimulation!

We understand HF much better than HS. Is HS viable?

and HS for EGS

Enhanced Flow Capacity

The effect of HF and Hydroshearing

Wedging and Propping...

 HF pries open natural fractures, proppant can be carried part way into the opening

Shear Dilation

Shear Dilation in Hydroshearing

MA-CUP - HF and HS for E

Dilation Impact?

* A small aperture increase...

$$Q = \frac{\gamma}{\mu} \cdot G \overset{\checkmark}{a^3} \Delta p \qquad \text{eff}$$

remnant effective aperture

...has a great effect on joint conductivity

δ and Effective Stress Ratio

- σ'₁/σ'₃ & σ'₃ impact shearing, dilation & complexity of the shearing zone.
- ...in ways that are not yet entirely clear...

Which Joints Slip?

Increasing p and reducing σ'_n leads to slip of critically oriented joint (blue areas).

Are Joints Rough or Smooth?

Waterloo

Rough and Smooth Joints

Hydroshearing?

- Hydroshearing: injection at pressures (p) just below the HF pressure $\approx \sigma_3$
- As high p propagates, Biot mechanics tells us that V^{\uparrow} , thus local σ_3 must \uparrow
- ullet ...and near-field [$\Delta \sigma_{ij}$] are different than farther out
- ...and stresses propagate "instantly", but pressures do not (diffusion)
- ...and apertures, and therefore "[k_{ij}]" also changes with injection time

What Happens During H5, HF?

Stick-slip shearing outside propped zone

The Stimulated Volume

RMA-CUP - HF and HS for EGS

Some Additional Commments...

- HF, HS modeling in NFR is challenging
- HF, HS models are getting better slowly
- Yet, because of uncertainty...
- No one can closely predict the effect of HS on the convective flow field
- I would suggest that on the next largescale EGS projects...
- A period of HS with controlled injection
- Injectivity monitoring, then HF later

Heat Flux, Fractured Rock

Enhanced Geothermal Systems The Future: Creating power from hot, tight rocks

EGS uses advanced technologies to access the heat of the earth and produce electricity.

Geomechanics Issues

- THM coupling in jointed rock masses
 - Highly non-linear joint conductivity
 - Conductive-convective heat transport
 - Channeling through dilated fractures
- Induced seismicity predictions: ΔT , Δp
 - > No good link between MS and RM
 - Cannot yet predict Mmax, recurrence
- Monitoring
 - Microseismic monitoring is not good enough
 - ⇒ Deformation monitoring is needed for geomechanics
 - ⇒ Fibre optics, tiltmeters, LIDAR (surface)...?

Challenges in EGS Evaluation

- MODEL-BASED assessment is vital...
 - → To make life predictions for \$\$ assessment
 - → To perform sensitivity analysis so that probabilistic predictions are possible
 - → To track EGS evolution, improving predictions during the project life
- BUT, this is very challenging.
- I will describe several big issues in modeling that face us...

Some Big Issues

Scale Effects and Rock Fabric Channeling (and Q) Predictions Predicting Seismicity Response Geomechanics Monitoring

Scale and Analysis (Simulation)

HS Changes Properties (DEM)

Comments on Where We Are...

- Upscaling is a useful option
- Computationally tractable for large cases
- Allows detailed stochastic analysis of many cases for risk analysis
- ...but these are early times as well...

RMA-CUP – HF and HS for EGS

Channeling and Q Prediction...

- Injecting cold water to extract heat will lead to "short circuiting"
- Cooling of the rocks leads to preferred expansion of a single fracture path
- Flow becomes concentrated along the single fracture path
- So the heat exchange Q with the rock mass declines, ...
- ...the system loses efficiency
- ...and 30 year predictability is desirable

Thermoelasticity & Channelling

RMA-CUP - HF and HS for EGS

Seismic Predictions

- \bullet $\Delta T \rightarrow$ thermoelastic contraction ΔV
- $\bullet \Delta V \rightarrow large stress changes$
- If the size of the project is large...
 seismicity will be generated
- Can we predict this?
- How large, how often?
- Can we control it?
- This is an important issue.
- Modeling and measurements are needed

Example of [O] Redistribution

MA-CUP - HF and HS for EGS

Hybrid Coupled Simulations...

RMA-CUP – HF and HS for EGS

Monitoring the EGS System

- P, T, rate are standard measures...
- Microseismic monitoring is good, but...
- We need <u>deformations</u> in order to:
 - ⇒ Track what is going on at depth
 - ⇒ Calibrate and use geomechanics models
- Options?
 - Precision tilt measurements
 - ⇒ Fibre-optics cables in shallow slim holes
 - ⇒ 3-D active seismics (stress changes)

MA-CUP - HF and HS for EGS

Surface Heave from ΔT & Δp

Deformations to monitor deep projects

Geothermal Heat Storage??

- Large challenges face us in trying to achieve EGS predictive capability
- ◆ Is HS viable, or is it always HF + HS?
- Rock fabric and scale effects
- Channeling, flow and heat flux effects
- Predicting seismicity (when, how big?)
- Real-time EGS management w. monitoring

These challenges are central to the future of EGS implementation

IF and HS for EGS

MA-CUP – HF and HS for EG

Acknowledgements

- ARMA and CUPB
- The Organizers, including Han Gang,
 Jiang Shu, Song Xianzhi, John McLennan
- Workers and coordinators, including
 Peter Smeallie, Sheng Mao, and others
- ...colleagues