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Distributed Acoustic Sensing: What is it?
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Distributed Acoustic Sensing

Pros
» Can be used in any orientation
» Provides more than one measurement
» High spatial and temporal resolution
» Large sensing distances
» Resistance to high pressure

» Durable - can function for years if not

decades

» Adequate fiber coupling

Cons
» Less sensitivity to broadside signals
» Some inadmissible sensor subsets

» Huge streams of data
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Motivation

,@, Why large rock block-scale studies in the lab?

» Rock blocks at the decimeter scale provide interim scale between plug size experiments and
the field

» Laboratory experiments provide a controlled environment to:

Replicate field-relevant stress conditions

Validate monitoring techniques such as DAS and AE

Study fracture initiation, propagation, and interaction with faults

Support safe and efficient design for field-scale applications

*@ @”\‘ ‘ ARMB



Project Goals

Aim
Understanding how (lab size) rock samples respond to hydraulic fracture stimulation:
— Reactivation of natural fractures and creation of new fractures.

— Understand influence of heterogeneities (e.g., stylolites)
Objectives

» Simulate hydraulic fracturing under controlled lab conditions.

» Integrate DAS & AE sensors for high-resolution HF monitoring.
- 3D imaging & higher resolution than just AE sensors

» Analyze microseismic data to map fracture networks and source mechanisms.

» Advance understanding of rock behavior during fluid injection for energy, geothermal, and CO,
storage applications.
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Approach

1. Smaller rock blocks: 15em x 15 cm x 15 cm

Purpose

» Preliminary testing to optimize experimental parameters such as injection pressure, AE sensor
placement, and fracturing conditions

» Iteration and troubleshooting of the experimental setup in a controlled and cost-effective manner

2. Larger rock blocks: 40 cm x40 cm x 40 cm
Purpose

» For the main hydraulic fracturing experiments to simulate more realistic subsurface conditions

» Provided a larger volume for fracture propagation, enabling comprehensive monitoring and
characterization of fracture networks

» Facilitated integration of multiple sensing technologies (e.g., DAS and AE]
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Sensor Array For Detection
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Rock Blocks
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Groove Dimensions
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Experimental Setup
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Rock is wrapped with
FO cables and
mounted in triaxial
frame.

AE transducers and
fiber optic cables for
DAS
» Coupling of FO
cables to rock

Isco-pumps for
confining pressure
applied & fluid

Injection.

AK-Sens interrogator:
Measurement:
Differential intensity
Gauge length: 1.5 m
Channel spacing: 0.94-1r
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Small Rock Block Experiments

Small Rock Block 1 Small Rock Block 3

> Tests on small
rock blocks.

> Limestone
fractures

» Marble
required pre-
conditioning
with LN

Small Rck Block 2
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Small Rock Block Experiment: Marble

Initial HF injection failed So, we precondition with LN,

» 3L of LN, at room
temp. & pressure

> Duration: 32 mins.

> AE sensors installed

» Peak pressure reached: 4,000 psi (27.6 MPa]
» Tubing came off!
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Small Rock Block Experiment: Marble

LN, initiates fractures

Acoustic Emission During LN2 Pouring
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Small Rock Block Experiment: Marble

HF conducted 2 hours after pre-conditioning with LN,



Small Rock Block Experiment: Marble

HF conducted 2 hours after pre-conditioning with LN,
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Four Large Rock Blocks: Before HF Experiment

Rock Block 1 Rock Block 2 Rock Block 3 Rock Block 4

Type: Limestone Type: Limestone Type: Limestone Type: Marble
Vp: 5,260 m/s Vp: 5,260 m/s Vp: 5,282 m/s Vp: 6,752 m/s
FO lines: 5/face FO lines: 6/face FO lines: 6/face FO lines: 6/face

Conf. Pres: 0.21-0.11 MPa Conf. Pres: 0.21-0.11 MPa Conf. Pres: 0.2 -0.11 MPa Conf. Pres: 0.18-0.10 MPa

> All rock blocks measured 40cm x 40 cm x40 cm

» Rock Block 3 had double wrap to improve signal-to-noise ratio

ﬁ » Rock Block 4 was preconditioned with 8L of liquid N, 36 hours prior to stimulation -
- AR
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Experiment: Four Large Rock Blocks after HF Experiment
Rock Block 4
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Experiment: Fracture and Stylolite Visualization
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Results from Rock Block 3

Signal Processing and Imaging
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Pump Statistics & Waveform Signal
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Overlay of DAS and Transducer Events Sections
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Imaging Challenges

Sample Processed DAS Records
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Imaging Challenges

1. Source wavelet unknown 2. Origin time unknown

Solution: Solution

» Sliding window analysis around expected
arrival time to capture and calculate energy
concentration = 250 window positions along
event section
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Travel-time Migration Results
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Top 10 High Energy Windows

1el0

1.6

i |
T |

1.0

>
3 q
-

W | ) w
UM S

' 0 50 100 150 200 250 B
*ﬁm Window # AR




Travel-time Cubes

window 33 : 955.77 [19, 29, 20] 233:-369.78 [10, 31, 31] 160 : 970.95 [24, 11, 21] 34 :1088.92 [21, 24, 21] 112 :-520.47 [31, 21, 20]
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Inverted Fracture Locations

Event 1 Event 2 Event 3

Event Location: (28, 17, 13) Event Location: (13, 19, 17) Event Location: (19, 28, 15)
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Inverted Fracture Locations
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Inverted Fracture Locations
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Conclusions

» Four lab-scale hydraulic fracturing experiments have been conducted on cubic rock blocks
measuring 40 cm x 40 cm % 40 cm.

» Additionally, three smaller-scale blocks (15 cm X 15 cm % 15 cm) were tested to explore
parameter sensitivity and refine instrumentation protocols.

» A cryogenic pre-fracturing process using about 8 liters of liquid nitrogen was done on rock
block 4, causing thermal shock and helping to initiate fractures before injecting fluid.

» DAS and AE data were collected from all large block experiments.

» Detection and localization of fractures in Rock Blocks 2 and 3 have been done using both DAS
and AE data.
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