

Lab-Scale Hydraulic Fracturing Experiments

Thomas Finkbeiner

8 June 2025

Acknowledgments

- HydraFrac team at KAUST
- AK-Sens Limited for the DAS interrogator used in this work

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

Distributed Acoustic Sensing: What is it?

Distributed Acoustic Sensing

Pros

- > Can be used in any orientation
- > Provides more than one measurement
- ➤ High spatial and temporal resolution
- ➤ Large sensing distances
- Resistance to high pressure
- Durable can function for years if not decades
- > Adequate fiber coupling

Cons

- > Less sensitivity to broadside signals
- > Some inadmissible sensor subsets
- > Huge streams of data

Motivation

Why large rock block-scale studies in the lab?

- > Rock blocks at the decimeter scale provide **interim scale** between plug size experiments and the field
- Laboratory experiments provide a controlled environment to:
 - Replicate field-relevant stress conditions
 - Validate monitoring techniques such as DAS and AE
 - Study fracture initiation, propagation, and interaction with faults
 - Support safe and efficient design for field-scale applications

Project Goals

Aim

Understanding how (lab size) rock samples respond to hydraulic fracture stimulation:

- Reactivation of natural fractures and creation of new fractures.
- Understand influence of heterogeneities (e.g., stylolites)

Objectives

- > Simulate hydraulic fracturing under controlled lab conditions.
- > Integrate DAS & AE sensors for high-resolution HF monitoring.
 - 3D imaging & higher resolution than just AE sensors
- > Analyze microseismic data to map fracture networks and source mechanisms.
- Advance understanding of rock behavior during fluid injection for energy, geothermal, and CO₂ storage applications.

Approach

1. Smaller rock blocks: 15 cm x 15 cm x 15 cm

Purpose

- > Preliminary testing to **optimize experimental parameters** such as injection pressure, AE sensor placement, and fracturing conditions
- > Iteration and troubleshooting of the experimental setup in a controlled and cost-effective manner

2. Larger rock blocks: 40 cm x 40 cm x 40 cm

Purpose

- For the main hydraulic fracturing experiments to simulate more realistic subsurface conditions
- Provided a larger volume for fracture propagation, enabling comprehensive monitoring and characterization of fracture networks
- Facilitated integration of multiple sensing technologies (e.g., DAS and AE)

Sensor Array For Detection

Two-rounds wrap (Rock Block 3; improve S/N)

2. Single-round wrap (Rock Blocks 1, 2, & 4)

- ➤Gauge length: 150 cm ➤ Channel Spacing: 54 cm
- Lines per face: 6
- Total wraps: 18

- Channels per wrap: 3
- Total Channels: 54

Channel = Receiver (sensor)

Rock Blocks

ARTINION american rock mechanics association

Groove Dimensions

Experimental Setup

- Rock is wrapped with FO cables and mounted in triaxial frame.
- AE transducers and fiber optic cables for DAS
 - Coupling of FO cables to rock
- Isco-pumps for confining pressure applied & fluid injection.
- AK-Sens interrogator:
 Measurement:
 Differential intensity
 Gauge length: 1.5 m
 Channel spacing: 0.54 m

Small Rock Block Experiments

Small Rock Block 1

Small Rock Block 2

Small Rock Block 3

- > Tests on small rock blocks.
- Limestone fractures
- Marble required pre-conditioning with LN₂

Initial HF injection failed

- > Peak pressure reached: 4,000 psi (27.6 MPa)
- Tubing came off!

3L of LN₂ at room temp. & pressure

Duration: 32 mins.

AE sensors installed

LN₂ initiates fractures

HF conducted 2 hours after pre-conditioning with LN₂

Playback at 0.02 s intervals

HF conducted 2 hours after pre-conditioning with LN₂

3D display of surface cracks

Four Large Rock Blocks: Before HF Experiment

Rock Block 1

Type: Limestone Vp: 5,260 m/s FO lines: 5/face

Conf. Pres: 0.21-0.11 MPa

Rock Block 2

Type: Limestone Vp: 5,260 m/s FO lines: 6/face

Conf. Pres: 0.21-0.11 MPa

Rock Block 3

Type: Limestone Vp: 5,282 m/s FO lines: 6/face

Conf. Pres: 0.2 -0.11 MPa

Rock Block 4

Type: Marble Vp: 6,752 m/s FO lines: 6/face

Conf. Pres: 0.18-0.10 MPa

- All rock blocks measured 40cm x 40 cm x 40 cm
- > Rock Block 3 had double wrap to improve signal-to-noise ratio
- \triangleright Rock Block 4 was preconditioned with 8L of liquid N_2 36 hours prior to stimulation

Experiment: Four Large Rock Blocks after HF Experiment

Rock Block 1

Limestone

Rock Block 2

Limestone

Rock Block 3

Limestone

Rock Block 4

Marble, LN₂

Experiment: Fracture and Stylolite Visualization

Rock Block 2

Rock Block 3

Rock Block 4

Results from Rock Block 3

Signal Processing and Imaging

Pump Statistics & Waveform Signal

A: Tappings

Rock

B: Breakdown

C: second failure (breakdown of additional fracture?)

D: Tubing (well casing) detached and "ejected" from the rock block

Overlay of DAS and Transducer Events Sections

Imaging Challenges

Frequency Spectrum of DAS

Sample Processed DAS Records

Imaging Challenges

1. Source wavelet unknown

Solution:

- Assume a zero-phase 20 kHz Ricker wavelet.
- Wavelet spectrum based on frequency spectrum of recorded events

Rock

2. Origin time unknown

Solution

Sliding window analysis around expected arrival time to capture and calculate energy concentration → 250 window positions along

Travel-time Migration Results

Top 10 High Energy Windows

Travel-time Cubes

Inverted Fracture Locations

Inverted Fracture Locations

Inverted Fracture Locations

Conclusions

- Four lab-scale hydraulic fracturing experiments have been conducted on cubic rock blocks measuring 40 cm × 40 cm × 40 cm.
- Additionally, three smaller-scale blocks (15 cm × 15 cm × 15 cm) were tested to explore parameter sensitivity and refine instrumentation protocols.
- A cryogenic pre-fracturing process using about 8 liters of liquid nitrogen was done on rock block 4, causing thermal shock and helping to initiate fractures before injecting fluid.
- > DAS and AE data were collected from all large block experiments.
- Detection and localization of fractures in Rock Blocks 2 and 3 have been done using both DAS and AE data.

Thank you for listening!

جامعة الملك عبدالله للعلوم والتقنية King Abdullah University of Science and Technology

